Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Proton conduction properties of crosslinked PTFE electrolyte membranes with different graft-chain structures

Sawada, Shinichi; Yamaki, Tetsuya; Asano, Masaharu; Terai, Takayuki*; Yoshida, Masaru

Transactions of the Materials Research Society of Japan, 30(4), p.943 - 946, 2005/12

We synthesized crosslinked-polytetrafluoroethylene (PTFE) electrolyte membranes by a radiation grafting technique under different conditions, and then investigated their proton conduction properties at controlled temperatures and relative humidities (R.H.) by an AC impedance method. The density and length of graft chains were controlled by varying the pre-irradiation dose and grafting time, respectively. When the pre-irradiation dose was fixed at 15 kGy to make the graft chains an uniform density, the elongation of the graft chain increased the ion exchange capacity (IEC), there by enhancing their proton conductivity. The membrane with an IEC of 2.8 meq/g possessed the maximum conductivity reaching 0.20 S/cm at 80 $$^{circ}$$C and R.H. 95%. At almost the same IEC, membranes with more and shorter graft chains showed higher conductivity than those with less and longer chains. This result was probably related to the different structures of hydrophilic domains as proton-conducting pathways.

Journal Articles

Research and development on accelerator-driven system for transmutation of long-lived nuclear waste at JAERI

Oigawa, Hiroyuki; Sasa, Toshinobu; Takano, Hideki; Tsujimoto, Kazufumi; Nishihara, Kenji; Kikuchi, Kenji; Kurata, Yuji; Saito, Shigeru; Futakawa, Masatoshi; Umeno, Makoto*; et al.

Proceedings of 13th Pacific Basin Nuclear Conference (PBNC 2002) (CD-ROM), 8 Pages, 2002/10

To reduce the burden on the final disposal of the nuclear waste, the Acclelerator-Driven System (ADS) which can transmute minor actinides efficiently has been studied in JAERI. The proposed ADS design is an 800MWth subcritical core with lead-bismuth coolant and minor-actinide nitride fuel driven by a neutron source of a superconductivity linear accelerator with 30MW and a lead-bismuth spallation target. To realize the ADS, many research and development are under way in the fields of the accelerator, the spallation target and the nitride fuel. Moreover, a new experimental facility, the Transmutation Experimental Facility, is proposed under a framework of the High-Intensity Proton Accelerator Project to study the feasibility of the ADS from physics and engineering aspects.

2 (Records 1-2 displayed on this page)
  • 1